The five (and only five!) Platonic solids are "perfect" since they are regular solids (or volumes) that are made of identical faces and that have identical vertices (or corners). The faces themselves are regular, i.e. they have edges of identical length which form identical angles. The vertices of the Platonic solids touch a sphere (the circumscribed sphere) and inside they hold a smaller sphere that touches each of the faces from within (the inscribed sphere).

So: the
*tetrahedron* is made of 4 identical regular triangles, the cube (which
could also be called the *hexahedron*) is made of 6 identical squares, the
*octahedron* of 8 identical regular triangles, the *dodecahedron* of 12 identical regular pentagons and the *icosahedron* of 20 identical regular triangles.

Because of
their perfectness, Plato was very fascinated by them *(Exhibit Nr. 19)*. For him, they represented
the perfect ideas that formed reality. He associated them forms to the four elements: air, water, fire and earth. The
fact that there were five perfect solids and only four elements was a bit
troublesome *(see Cat. Nr. 104)*. When Aristotle talked about the ether as
the fifth element that pervades the Universe, he was no longer interested to associate the elements with the perfect forms.

Much later Johannes Kepler (1571 - 1630) would still try to match the orbits of the then known planets (Mercury, Venus, Mars, Jupiter and Saturnus) with circumscribed or inscribed spheres of the five Platonic solids nested into one another. He eventually gave up, and in fact concluded, rightly, that the orbits of the planets were not even circles but ellipses!

Seeing the Platonic solids, seeing their perfectness or even a clumsy attempt to build them, still stir awe. They still give a feeling that, somehow, they might have something to do with the interconnectedness of all things.

postmaster@museumofanthropocenetechnology.org, via Leggiuno 32

Laveno Mombello

21014

Italia